

2021 Robin Grays Public Water System
Drinking Water Consumer Confidence Report
PWS ID 1330912

Introduction

This brochure is a summary of the quality of the water we provided last year. Included are details about where your water comes from, what it contains, and how it compares to Environmental Protection Agency (EPA) standards. We are providing you with the information because we want you to be informed. We know that you count on us for a safe and reliable supply of water every day and we are dedicated to providing the highest quality of service to you.

The Clermont County Board of County Commissioners owns and operates the Clermont County Water System. The Village of New Richmond purchases water from the Clermont County Water System to provide water for our system Robin Grays Public Water System. We encourage public interest and participation in our community's decisions affecting drinking water. Public feedback is welcome. Anyone wishing to comment on water quality or the operation of the water system is encouraged to do so by attending the Village Council meetings that are held the second and fourth Tuesday of each month starting at 7:00 P.M. Further information about Council meetings dates can be obtained by calling 553-4146. Meetings dates are also posted on the Village's website www.newrichmond.org. Specific questions concerning your water should be directed to Ken Shearwood with the New Richmond Utility Department at 553-4146 and/or Tim Neyer with Clermont County Water at 732-7945.

Drinking Water Quality

Clermont County Water System and the Village of New Richmond both ensure that your water is safe through regular monitoring and testing of water quality. Our own, as well as other, independent state-certified testing laboratories conduct these tests. This report shows a comprehensive summary

of the laboratory test results for the contaminants we have <u>detected</u> in the drinking water in the most recent testing done in accordance with the drinking water regulations. Responsibility for maintaining water quality resides with our staff of

certified water treatment plant operators, licensed by the Ohio Environmental Protection Agency (OEPA).

The Safe Drinking Water Act directs the state, along with the Environmental Protection Agency (EPA), to establish and enforce minimum drinking water standards. These standards set

sampling frequency and concentration limits on certain biological, radioactive, organic and inorganic substances sometimes found in drinking water. The limits are called Maximum Contaminant Levels or MCLs. The Maximum Contaminant Levels (MCLs) are set to prevent health problems for people throughout their lifetime.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than is the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ

transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on ap-

propriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

In the area of clean water, an ounce of prevention is definitely worth a pound of cure. All citizens should take extreme care when disposing of all hazardous wastes.

Water Source

The Clermont County Water System operates three water treatment plants that pump into a common distribution system of pipes serving our customers.

The MGS plant, located near Miamiville, draws from wells in

the Little Miami River Aguifer. In 2004, the Ohio EPA performed a source water assessment for the MGS well field and designated it as highly susceptible to contamination. This is based in part on the geology of the aquifer, which is shallow and has little or no impermeable materials atop it. Another factor is the presence of potential sources of pollution in the area. The EPA also

notes the presence of nitrates in the water, which suggests manmade influence in the aquifer. However, the water continues to meet drinking water standards.

The PUB plant is near New Palestine, where its wells draw from the Ohio River Valley Aquifer. A draft susceptibility analysis from the Ohio EPA has determined that this aquifer has a high susceptibility for contamination, based on a relatively thin layer of low permeability material overlying the aquifer, and the relatively shallow depth of the aquifer. Potential pollution sources in the area and a possible hydraulic connection to the Ohio River also contribute to this assessment. However, the EPA agrees that there is no evidence of existing chemical contaminants. These well fields are monitored for contamination and cared for under the Wellhead Protection Plan. Persons who wish to learn more may call Tim Neyer at 513--732-7945.

The Bob McEwen Water Treatment Plant (BMW) is located near Batavia and draws surface water from Harsha Lake, which was created by constructing a dam across the East Fork Little Miami River. Surface water is more susceptible to contamination than groundwater; so extensive testing of the raw water is conducted frequently. Chemical and bacteriological testing, as well as evaluation of the biological organisms living upstream of the lake is used to determine raw water quality and identify areas of concern. The Ohio EPA completed a source water assessment for BMW in 2004. The protection area around Harsha Lake and the upstream portions of the East Fork Little Miami River includes a number of commercial and industrial facilities, but the greater concern is runoff from agricultural fields, the potential for spills at road and rail crossings, and

residential septic systems in the watershed. Persons who wish to learn more may contact Rick Fueston at 513-553-3338. Additional information on the watershed collected by Clermont County is available from the Office of Environmental Quality (OEQ) at 513-732-7894 or the website: http://www.oeq.net.. After treatment, which includes Granular Activated Carbon filtration, water from the lake meets all required drinking water standards.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Contaminants that may be present in source water include: (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or fanning. (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, storm water runoff, and residential uses. (D) Organic chemical contaminants, including synthetic and volatile organics, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff and septic systems. (E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

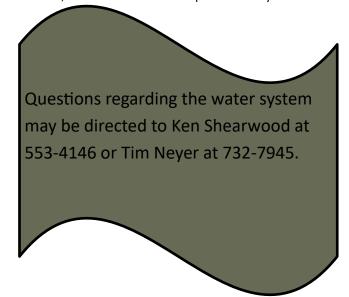
Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

Source Water Assessment

Potential pollution sources identified in the PPSI include: Walter C. Beckjord Generating Station, the PUB Water Treatment Plant, onsite wastewater treatment systems, underground and above ground fuel storage tanks, the Ohio River, Ten Mile Creek, and transportation routes (B&W, 1998). The specific susceptibility rankings were all the "high priority" rankings. Customers may get a copy of the assessment by calling Tim Neyer at 732-7945.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from an Aerials and components associated with service lines and home plumbing. The Village of New Richmond is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at http://www.epa.gov/safewater/lead.


Turbidity

Turbidity is a measure of the cloudiness of water and is an indication fo the effectiveness of our filtration system. The turbidity limit set by EPA is (0.3 NTU) in 95% of the samples analyzed each month, and shall not exceed 1 NTU at any time. As reported in the table , the Robin Grays PWS highest recorded turbidity result of 2021 was 0.220 and lowest monthly percentage of samples meeting the turbidity limits was 95 percent.

that were detected between January 1 and December 31, 2021. Remember that detecting a substance does not necessarily mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels. The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken. Clermont County Water participated in the 3rd stage of the EPA's Unregulated Contaminant Monitoring Rule (UCMR3) program by performing additional tests on our drinking water. UCMR3 benefits the environment and public health by providing the EPA with data on the occurrence of contaminants suspected to be in drinking water in order to determine if EPA needs to introduce new regulatory standards to improve drinking water quality. Contact Tim Neyer at 732-7945 for more information on this program

License to Operate Information

Both the Village of New Richmond and Clermont County Water have current, unconditioned license to operate water systems.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule. The information in the data tables shows only those substances

How Do I Read This Table?

The table shows the results of our water-quality analyses. Every regulated contaminant that we detected in the water, even in the minutest traces, is listed here. The table contains the name of each substance, the highest level allowed by regulation (MCL), the ideal goals for public health, the amount detected, the usual sources of such contamination, footnotes explaining our findings, and a key to units of measurement.

Key To Units of Measurement

MCL = Maximum Contaminant Level AL = Action Level

MCLG = Maximum Contaminant Level Goal ppm = parts per million, or milligrams per liter (mg/1)

ppb = parts per billion, or micrograms per liter MRDL = Maximum Residual Disinfectant Level

MRDLG = Maximum Residual Disinfectant Level Goal

Contaminant	Year Sam- pled	Unit	MCL	MCLG	Detected Level	Range	Major Sources	Viola- tion YES/ NO
Nitrate	2021	ppm	10	10	1.56	0.227- 1.56	Runoff from fertilizer use, Leaching from septic tanks, Sewage, Erosion of natural deposits	No
HAA5 (Haloacetic	2021	ppm	60	NA	8.8	8.8-8.8	By-product of drinking water disinfection	No
Fluoride	2021	ppm	4	4	1.02	0.82- 1.44	Erosion of natural deposits – etc.	No
Barium	2021	ppm	2	2	0.036	0- 0.036	Discharge drilling – etc.	No
TTHM	2021	ppb	80	NA	66.9	66.9- 66.9	By product of drinking water chlorination	No
Turbidity (NTU)	2021	NTU	TT	NA	0.220	0.020- 0.220	Soil runoff	No
Turbidity (Lowest Monthly Percent Meeting Limit)	2021		95% of sam- ples meet the limit	NA	100	NA	Soil runoff	No
Contaminant	Year Sam- pled	Unit	MRD L	MRDL G	Detected Level	Range	Major Sources	Violation YES/NO
Total Chlorine	2021	ppm	4	4	0.95	0.62- 1.60	Water additive used to control microbes	No

Contami- nants (Units)	Action Level (AL)	Individual Results over the AL	90% of test levels were less than	Violation	Year Sam- pled	Typical Source of Contamination
Lead (ppb)	15	0	2.0 ppb	No	2021	Corrosion of household plumbing systems.

0 out of 5 samples were found to have lead in the excess of the lead AL of 15 ppb

Copp	er	1.3	0	0.115 ppm	No	2021	Corrosion of household plumbing systems.
------	----	-----	---	-----------	----	------	--

0 of 5 samples were found to have copper in excess of the copper AL of 1.3 ppm

Water-Quality Table Footnotes

These columns show the results of tests on our finished water. Although we ran many tests, only the listed substances were found. They are all below the MCL required.

Unregulated Contaminants

VILLAGE OF NEW RICHMOND did not test for Cryptosporidium.

VILLAGE OF NEW RICHMOND did not test for Radon

Definitions of MCL and MCLG are important

90th percentile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

MRDLG: (maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MRDL: (Maximum Residual Disinfectant Level): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of disinfectant is necessary for control of microbial contaminants.

NA: Not applicable

ND: (Not detected): Indicated that the substance was not found by laboratory analysis.

NTU: (Nephelometric Turbidity Units) Measurement of the clarity, or turbidity of water. Turbidity in excess of 5f NTU is just noticeable to the average person.

TT (Treatment Technique): A required process intended to reduce the level of contaminant in drinking water.